

Field Moisture Monitoring to Support the Design of Durable Energy Efficient Wall Systems

NAHB Research Center Vladimir Kochkin

Purpose

- Document the moisture performance of EE wall systems in a variety of climate zones that meet or exceed the minimum insulation levels and air tightness requirements of the 2012 IECC
- Support the design of durable energy efficient wall systems
- Funding: NAHB, FPL, Building America

Energy Efficiency Features Impact Wall's Durability

- Reduced building infiltration rates
- Lower wall air leakage
- **■** Changes in wall layer permeance
- Increased wall insulation
- Different location of R-value relative to cavity

Building Codes

- Energy codes provide min insulation requirements, not wall design solutions
- IECC prescriptive insulation in CZ 6-8: R20+5
 - Durability? IRC, IBC
- Vapor Retarders (IRC Chapter 7)
 - CZ 6: +R11.25 for 2x6 walls with Class III
 - CZ 7-8: +R15 for 2x6 walls Class III
 - R20+5: Class I or II

Vapor Retarder in CZ 7 for R20+5

- Best practices from the strictly moisture management standpoint
 - Warm cavity: +R10 or more exterior
 - Significant change for builders constructability
- Incremental change
 - More common in residential market
 - One inch of exterior insulation +R4-R5
 - EPS, XPS, other rigid insulation board
 - Vapor retarder
 - Kraft paper (is it enough?)
 - Poly, smart vapor retarder, spray foam also air barrier

Technical Approach 1

 Cataloguing and monitoring EE wall designs used by builders in various climates

Wall Configurations

- Systems and Materials
 - 2x4, 2x6, 2x6 with offset 2x4 studs
 - R13-R24 cavity
 - Open cell spray foam
 - Closed cell spray foam
 - Flash & batt
 - 1-inch XPS
 - 2-inch XPS
- 17 unique wall configurations

Technical Approach 2

- Test Huts in Climate Zone 4 to evaluate the performance of various EE wall designs
 - 2x4, 2x6
 - Vapor retarders
 - 1-inch XPS exterior insulation
 - Quarterly water injections
 - Indoor RH (ASHRAE 160 simplified method)

Monitor cavity T & RH and MC of Sheathing and Framing

Preliminary Results of Monitoring for Selected Test Sites

- Site in Climate Zone 6A
- Site in Climate Zone 4A

Climate Zone 6A - OSB MC

CZ 6A, South Exposure Wall

CZ 4A, NW orientation, model home, humidifier

CZ 4A, Test Huts, North orientation

Preliminary Field Results

- Significantly reduced drying rates for OSB sandwiched between low perm exterior insulation and low perm flash
- OSB moisture content is lower for wall with higher levels of exterior insulation but the drying rate is reduced
- Construction moisture appears to influence the OSB MC for walls without interior vapor retarder

Preliminary Field Results

- In CZ 6, wall systems with 2" exterior foam w/o flash and wall systems with 1" with flash have reasonable OSB MC levels in a tight house with lower interior RH and no vapor retarder
- In CZ 4, walls with R20+ cavity insulation have reasonable OSB MC levels in a tight house with moderate interior RH and no vapor retarder

Preliminary Field Results

- Based on controlled field testing with interior RH level >50%, the winter OSB MC is significantly lower for walls with kraft paper vapor retarder
- In summary, incremental improvements to walls systems is less prone to elevated MC levels when interior RH is maintained at lower levels and drying to either exterior or interior is provided

Value

- Align wall configuration with the moisture performance in a specific climate zone
- Validate the field performance of design features
- Identify potential design issues
- Document the indoor conditions for energy efficient homes

Market Readiness

- The performance data will be immediately relevant to the construction materials and systems available in the market today
- Design recommendations will be also relevant to the construction of durable energy efficient walls
- The solutions will be available to builders for immediate implementation